분류
2024년 8월
작성일
2024.04.08
수정일
2024.04.08
작성자
김용수
조회수
188

Advanced Defense Framework against Physical Adversarial Camouflage via Continual Adversarial Training

Title: Advanced Defense Framework against Physical Adversarial Camouflage via Continual Adversarial Training

 

Abstract:

Physical adversarial camouflage has emerged as a significant threat to computer vision AI models, particularly in deceiving x-object detectors from any viewpoint with full-surface patterns on target x-objects. Despite the urgency, effective countermeasures have yet to be proposed. This dissertation introduces a new method, termed continual adversarial training, tailored for defending against physical adversarial camouflage. Traditional adversarial training involves retraining the model to enable it to identify adversarial examples. However, since adversarial camouflage typically targets specific classes, such as vehicles, conducting adversarial training exclusively with data from classes subjected to adversarial camouflage can lead to catastrophic forgetting, wherein the model loses previously learned information about other classes. To mitigate this, our method combines knowledge distillation-based continual learning with adversarial training to address catastrophic forgetting while enhancing robustness against adversarial camouflage. The framework further enables selective adversarial training on specific classes, making it particularly effective against adversarial camouflage. Additionally, we enhance performance by optimizing the loss term in continual adversarial training and employing an iterative, dynamic adversarial training framework. Our extensive experiments show robust applicability across diverse x-object detection models.

학위연월
2024년 8월
지도교수
김호원
키워드
Adversarial Defense, Adversarial Camouflage, Continual Learning
소개 웹페이지
https://sites.google.com/view/kysphd/
첨부파일
첨부파일이(가) 없습니다.
다음글
Task-Specific Differential Private Data Publish Method for Privacy-Preserving Deep Learning
신진명 2024-04-09 18:00:17.46
이전글
한글 메신저 채팅의 크로스 텍스팅 탐지를 위한 저자 검증 모형
이다영 2024-04-05 10:38:33.61
RSS 2.0 132
게시물 검색
박사학위논문
번호 제목 작성자 작성일 첨부파일 조회수
132 확산 모델 기반 필기 이미지 생성에 관한 연구 홍동진 2025.04.10 0 68
131 연합 학습 기반 전기차 충전 인프라 최적 운영 및 전력망 안정을 위한 유연성 자원 활용 연 류준우 2025.04.09 0 64
130 Design and Analysis of Quantum Circuits for Inform 와다니 리니 위스누 2025.04.08 0 67
129 Towards computation - communication efficient and 응우옌 민 두옹 2025.04.08 0 66
128 Quantum Convolutional Neural Networks for Classifi 노대일 2025.04.08 0 69
127 Service Management for Reliable Distributed 6G IoT 응우옌 쑤언 둥 2025.04.08 0 55
126 Large Language Model for Penetration Testing Domai 데리 프라타마 2025.04.07 0 95
125 Discovery and Authentication of Marker Genes Using 프라타마 리안 다니스 아디 2025.04.07 0 79
124 산업 환경의 IEEE 802.15.4 TSCH 기반 네트워크에서 트래픽 처리량 향상을 위한 이희준 2025.04.07 0 93
123 Uncertainty-Based Hybrid Deep Learning Approach fo 멘가라 악셀 기드온 2024.12.10 0 119
122 Effective Deep Learning Primitives Design for Bina 황선진 2024.10.14 0 122
121 Toward Immersive Multiview Video Streaming through 탄중 디온 2024.10.14 0 88
120 A Low-cost Deep Learning Model for Real-time Low L 등 제강 2024.10.10 0 143
119 Enhancing Nested Entity Recognition Using Nested R 양홍진 2024.10.09 0 110
118 다양한 도메인과 데이터 형식에 강건한 사전학습 언어모델 기반의 표 질의응답 방법 조상현 2024.10.09 0 121
117 Trust Guard Extension for Enhanced Security Featur 김해용 2024.05.04 0 147
116 Task-Specific Differential Private Data Publish Me 신진명 2024.04.09 0 163
115 Advanced Defense Framework against Physical Advers 김용수 2024.04.08 0 188
114 한글 메신저 채팅의 크로스 텍스팅 탐지를 위한 저자 검증 모형 이다영 2024.04.05 0 162
113 상태 기반 테스트 시나리오 보강 방법 이선열 2023.10.17 0 240